
 CalPal: A Multimodal Digital Wall Calendar 
 by 

 Devin Murphy and Jenny Moralejo 

 Abstract 
 Mobile  calendaring  platforms  provide  unparalleled  convenience  and  accessibility,  yet  often  lack 
 the  tactile  engagement  and  personalized  touch  of  physical  mediums.  This  paper  introduces 
 CalPal,  an  innovative  multimodal  digital  wall  calendar  designed  to  bridge  this  gap  by  blending 
 digital  convenience  with  the  benefits  of  traditional  calendars.  CalPal  integrates  pen-based  event 
 tracking,  seamless  synchronization  with  Google  Calendar,  intuitive  gesture-based  navigation, 
 and  dynamic  theming  based  on  monthly  events,  distinguishing  it  from  existing  digital  wall 
 calendar  solutions.  Our  system  on  average  is  able  to  detect  the  navigation  gestures  (flipping 
 forward  and  flipping  backward)  with  98%  and  87%  accuracy  respectively.  Through  a 
 comprehensive  user  study,  we  also  demonstrate  user  satisfaction  with  CalPal's  intuitive 
 interaction  modalities  and  custom  theming.  Overall,  these  results  indicate  that  CalPal  represents 
 a  promising  approach  to  harmonizing  the  strengths  of  digital  and  traditional  calendaring 
 practices, thereby providing users with a more holistic and insightful scheduling tool. 



CalPal: A Multimodal Digital Wall Calendar

Devin Murphy
Massachusetts

Institute of Technology
devinmur@mit.edu

Jenny Moralejo
Massachusetts

Institute of Technology
moralejo@mit.edu

Abstract

Mobile calendaring platforms provide unparalleled con-
venience and accessibility, yet often lack the tactile engage-
ment and personalized touch of physical mediums. This
paper introduces CalPal, an innovative multimodal digital
wall calendar designed to bridge this gap by blending dig-
ital convenience with the benefits of traditional calendars.
CalPal integrates pen-based event tracking, seamless syn-
chronization with Google Calendar, intuitive gesture-based
navigation, and dynamic theming based on monthly events,
distinguishing it from existing digital wall calendar solu-
tions. Our system on average is able to detect the naviga-
tion gestures (flipping forward and flipping backward) with
98% and 87% accuracy respectively. Through a compre-
hensive user study, we also demonstrate user satisfaction
with CalPal’s intuitive interaction modalities and custom
theming. Overall, these results indicate that CalPal repre-
sents a promising approach to harmonizing the strengths of
digital and traditional calendaring practices, thereby pro-
viding users with a more holistic and insightful scheduling
tool.

1. Introduction and Related Work
In recent years, traditional methods of organizing sched-
ules, such as wall calendars and paper planners, have seem-
ingly been overshadowed by the widespread adoption of
mobile calendaring applications like Google Calendar and
iCal. This shift can be attributed largely to the convenience
afforded by digital platforms, allowing for instantaneous
scheduling and effortless sharing across devices. However,
despite the undeniable utility of digital calendars, there are
inherent qualities of physical mediums that are absent in
their digital counterparts. For instance, the tactile experi-
ence of writing on a paper calendar offers a sense of nat-
ural interaction and enables personalized annotations be-
yond the limitations of a standard keyboard. Moreover, re-
search may indicate that users of paper calendars may ex-

perience a greater likelihood of plan execution, attributed to
the medium’s encouragement of a more holistic, big-picture
approach to scheduling [4].

In light of these observations, we propose ”CalPal,” a
multimodal digital wall calendar. CalPal combines the ac-
cessibility of digital calendars with the tangible benefits of
traditional calendaring practices, offering features such as
pen-based event tracking and display, synchronization with
Google Calendar, intuitive gesture-based navigation, and
generative theming based on the events in a month. In many
commercially available digital wall calendars, such as the
Mango Display [3] and DAKboard [2], we have found that
interaction was mainly limited to display and touch, while
CalPal also allows for interaction through the use of ges-
ture. Additionally, these digital wall calendars do not allow
for mobile calendar sync through recognition of the user’s
own handwriting. This is an important distinction, as re-
search has shown handwriting results in better memory and
therefore may be a more effective means of scheduling [7].
Finally, while the Mango Display and DAKboard have cus-
tomizable themes, they do not automatically update to re-
flect the events of the current month. As noted by the au-
thor of [5], it feels like a missed opportunity that we rarely
use our calendars to reflect on our past or present. Through
CalPal’s generative theming, we hope to provide a more in-
sightful calendaring experience for users.

2. System Functionality

Our system is a digital wall calendar that supports touch
based calendar and event manipulation, gesture based cal-
endar flipping, event based generative calendar theming, on-
line calendar syncing, and state maintenance.

2.1. Touch Based Functionality

Through touch, our system allows the user to interact with
the calendar. The functionality currently supported in-
cludes: writing on the calendar, erasing writing, adding
events, removing events, and flipping through calendar



Figure 1. Calendar Application Buttons

This figure shows the buttons of the calendar application interface. The
”Draw” and ”Erase” buttons allow the user to write and erase while the
”Add Event” button adds the current writing as an event. ”Today”, ”Back”,
and ”Next” when toggled switch the month view accordingly.

months. This is interfaced through the button menu of the
application as seen in Figure 1.

In order to write events on the calendar, the user can se-
lect the ”Draw” button and begin drawing on the screen.
Should they not like what they have written, they can select
the ”Erase” button which will automatically erase what they
had last written.

In order to add events to the calendar the user must write
in the event date box that the event should be scheduled
for. Should the user be satisfied with the event they have
written on the calendar, by tapping the ”Add Event” button
the event is added to the calendar. Should the event writing
be unreadable, the user will be notified with an error asking
them to try again. The system supports the addition of all-
day events as well as timed events.

In order to remove events from the calendar after they
have been added, the user can select ”Erase”, then tap any-
where on the text of the event they would like to remove,
and the event will be removed. In ”Erase” mode the user is
unable to draw on the calendar.

The user is additionally able to flip backwards and for-
wards through the calendar pages by tapping ”Back” and
”Next” respectively. Tapping on the ”Today” button resets
the calendar view back to the current month.

2.2. Gesture Based Functionality

In addition to using buttons to flip through calendar pages,
we also support using gestures to flip through these pages.
Currently the system supports a flip forward and flip back-
ward gesture. The user is able to flip forward by first hold-
ing their hand upright in a closed fist and then opening their
hand as shown in Figure 2. The user is able to flip backward

Figure 2. Forward Gesture Poses

(a) Forward Gesture Start (b) Forward Gesture End

This figure demonstrates the expected starting and ending pose for
forward gesture detection.

Figure 3. Backward Gesture Poses

(a) Backward Gesture Start (b) Backward Gesture End

This figure demonstrates the expected starting and ending pose for
backward gesture detection.

by first holding their hand up right with only their pointer
finger extended and then closing their fist as shown in Fig-
ure 3. When either the flip forward or flip backward gesture
is completed as described above, the calendar page flips for-
ward or backwards a page accordingly.

2.3. Generative Calendar Theming

The art shown in the calendar banner as seen at the top of
Figure 4 is updated to reflect the events on the calendar.
Every time an event is added or deleted, this art changes.

2.4. Online Calendar Syncing

Every time an event is added or deleted from the applica-
tion, these changes are also reflected in the linked Google
Calendar configured upon application start up.

2.5. State Maintenance

Finally, the system is able to maintain 12 months worth of
state, allowing for consistency upon system start up and shut
down, as well as flipping between month to month.

2.6. Example Use Case

Upon loading up the calendar application, the user is
greeted with the current month view of the application as
seen in Figure 4.



Figure 4. Current Month View: May

This figure shows the current month view of the calendar with no events written on it.

Figure 5. April Month View

This figure shows what the user sees upon flipping to the previous
month of the calendar (given the current month is May.)

The touch based functionality is supported through the
user touching and writing on the screen. The user, using
gestures or buttons, flips backwards to the previous month
of April shown in in Figure 5. The user then flips forward
(with either gesture or buttons) to the month of June shown
in Figure 6. Each of these month views, even while empty
have distinct theming representative of the month.

The user has an all day Anime Convention they would
like to attend on June 13th. The user grabs the touch stylus,
making sure they are in ”Draw” mode, and writes Anime
Convention in the June 13th box. The user then clicks the
”Add Event button”. Rapidly, the user sees the generative
theming change from the summer garden view in Figure 6 to
a banner with anime characters. User input and the changes
in generative theming are shown in Figure 7. The user sees
the event show up in their linked Google calendar scheduled
as an all day event as well in Figure 8.

Figure 6. June Month View

This figure shows what the user sees upon flipping to the next month
of the calendar (given the current month is May.)

The user receives a call from their friend notifying them
that they are getting married on June 7th at 10PM. The user
scribbles ”Wedding 8PM” in their calendar. Mid call, the
friend notifies the user that the event actually starts at 9PM.
The user simply clicks erase to completely erase what they
had just written changing the screen to the one shown in
Figure 7. The user now rewrites ”Wedding 9PM”. Upon
touching the ”Add Event” button, the user sees the gen-
erative theming update to include an anime character in a
wedding dress as shown in 9. The user opens their linked
Google calendar and sees the event ”Wedding” scheduled
for 9PM in Figure 8.

It turns out the user had mistakenly scheduled these
events in June when they should have been scheduled for
July. The user clicks on the ”Erase” button and clicks any-
where on the text they had written to delete both ”Anime
Convention” and ”Wedding 9PM”. The calendar is now



Figure 7. Adding All Day Event: Anime Convention

This figure shows the output of our system upon the event ”Anime Convention” being written on the calendar for June 13th. The system updates the
themed banner at the top of the month to include anime figures.

Figure 8. Google Calendar Sync

The linked Google calendar after the user has written ”Anime Conven-
tion” and ”Wedding 9PM” on the calendar and has added both events.

empty and reverts back to the view in Figure 6. The user
checks their Google calendar and sees the events have now
been completely deleted.

3. System Design and Architecture

We decided to prototype CalPal as a fullstack web appli-
cation using ReactJS to develop the frontend served by a

Figure 9. Adding Timed Event: Wedding

This figure shows the output of our system upon the event ”Wedding
9PM” being written on the calendar for June 7th. The system updates
to integrate the new event with the existing ones to create a new theme.
The banner now displays an anime character in a wedding dress.

Python Flask backend. This allowed us to rapidly prototype
a user interface and maintain a stateful application which
could process multimodal inputs as seen in Figure 10. Over-
all our system takes in two types of inputs: pen based and
gesture based to manipulate the calendar. The pen based



Figure 10. Overall architecture Diagram

This is the overall architecture diagram of our system. The system takes in touch inputs from the touch screen and gesture inputs from the camera
which get passed into the front end and backend respectively. These inputs are processed and outside libraries are queried to update the state of both
the back and frontend to create a calendar display with the top banner displaying generative art based on the calendar events and the bottom calendar
displaying the handwritten events.

input is passed to the front-end, while the gesture based
input is passed to the backend. These two components
work together to pass information while querying outside
libraries such as the Google Cloud Vision API for hand-
writing recognition, Google Calendar API for event sync-
ing, and Hugging Face API for stable diffusion generative
calendar theming, to render and change the display based
on user input.

3.1. Frontend

The CalPal frontend was created using ReactJS and the
react-big-calendar library. It is responsible for 3 main tasks:
managing the calendar display, looking for gesture input,
and processing touch inputs to add or remove events. To
manage the calendar display, we get the necessary infor-
mation for rendering the calendar view from the back-end
through GET requests (/monthEvents and /monthTheme)
and update the view when the page loads or month changes.
This process is shown in Figure 11. The calendar them-
ing is updated by repeating the stable-diffusion generated
image in the horizontal direction, as seen in figures 7 and
9. The main information necessary for rendering the calen-
dar view is an image displaying the month’s saved events
in the user’s handwriting, and bounding boxes representing
the area of the canvas HTML element that each individual
event occupies. The bounding boxes are necessary for event

modification, which we explore in more detail later in this
section.

Figure 11. Sequence diagram for updating the calendar display

To look for gesture input, our frontend sends a GET re-
quest (/lookGesture) to the backend every second to check
if a flip forward or flip backward gesture has been made
(Figure 12). If so, it updates the month view accordingly.
The polling interval of one second was decided on mainly
through trial and error, the trade-off with increased polling



frequency being reduced latency between gesture produc-
tion and visual feedback of the calendar updating, but less
responsiveness to touch input due to the overactive network.
In future work, this tradeoff can be avoided through the use
of websockets to enable bi-directional communication be-
tween the frontend and backend, or by compiling the React
frontend to a static site and serving it from the same port as
the Flask backend.

Figure 12. Front-end looks for gesture from backend every 1 sec-
ond

Finally, the frontend maintains a draw state and erase
state for helping manage the touch based input from the
user. When in the draw state, the canvas updates with the
user’s stroke, and a bounding box is calculated based on
their minimum/maximum X and Y coordinates. When the
”Add Event” button is clicked, the current canvas is down-
loaded as a png image and sent to the backend along with
the bounding box for the event, which the backend then uses
for month state management and to add the event to Google
Calendar. In the case that the backend is unable to detect an
event from the written text, the user is notified using a win-
dow alert prompting them to try re-adding the event, and
the unidentified stroke is subsequently deleted. Upon click-
ing the ”Erase” button, the frontend enters the erase state,
and any strokes from unadded events are removed from the
canvas. If an event’s bounding box is touched while the
frontend is in the erase state, the event is removed from the
canvas and a request is sent to the backend to remove the
event from Google Calendar. This process is illustrated in
Figure 13

3.2. Backend

Our backend consists of 3 main parts: the server, the calen-
dar abstract data type, and the gesture recognizer as shown
in Figure 14.

Figure 13. State machine for managing touch based inputs from
the user, along with an illustrated example of an event bounding
box

3.2.1 Server

Upon start up, the server is responsible for multiple things
including, loading in the previous calendar object for state
maintenance as well as setting up the token credentials
for outside library API access. State is being maintained
through the pickling of the backend calendar object every
time an event is added or deleted from the calendar.

The server contains multiple API endpoints. The end-
points monthEvents (given a month, returns the month’s
canvas and event bounding boxes), monthTheme (given a
month, returns the month’s theme image), addEvent (given
the user handwriting, updates the backend state and returns
the event id), and modifyEvent (given the month, event id,
and canvas, deletes the event from the backend state), and
lookGesture (returns the output of the gesture recognizer)
are queried by the frontend.

Whenever the addEvent endpoint is queried, the server
makes a call to the Google Cloud Vision API to map the
handwriting provided by the frontend to machine readable
text. The decoded event name is passed into the Google Cal-
endar API to create an event in the linked Google Calendar
returning an event id linking the event in our backend to
the event in the Google calendar. The decoded event name
along with the event id is then passed in to the backend Cal-
endar object to update and maintain state.

Whenever the deleteEvent endpoint is queried with an
event id, the server, in addition to updating the calendar ob-
ject, makes a call to the Google Calendar API to delete the
event from the linked online calendar.

Additionally, the server also maintains state on whether
the frontend has received the output of the gesture recog-
nizer (via the lookGesture endpoint). The final API end-
point is queried by the gesture recognizer to update this state
to Forward or Backward whenever a gesture is detected. Af-
ter the lookGesture event is queried to get the result of the
recognizer, this state is reset to None.



Figure 14. Backend Architecture Diagram

This figure shows a more detailed view of the backend architecture. The backend consists of the parts in this figure: the server which responds to
frontend and gesture recognizer requests by calling outside APIs for handwriting detection and digital calendar syncing and querying the calendar
object, the calendar object which maintains the state of the calendar and calls the Hugging Face API to generate it’s theme, and the gesture recognizer
which takes in real time video that is passed through the Media Pipe hand landmarker for analysis.

3.2.2 Calendar Abstract Data Type

The calendar ADT is responsible for maintaining the state
of the calendar in the backend and is pickled to recover the
calendar upon server restart.

The calendar object maintains the following information
for 12 months: the month’s canvas (ie: the user’s hand-
written events as seen on the frontend), the month’s events
(including event ids, names, and bounding boxes), and the
month’s themes.

The calendar object supports querying it’s own informa-
tion as well as mutating it’s state through adding or deleting
an event. The server actively queries the calendar object as
described above in the server section.

Whenever the state of the calendar object is mutated
through adding or deleting an event, the calendar object
calls the Hugging Face API to run stable diffusion on the
updated set of events in the calendar for that month gener-
ating a new month theme image.

3.2.3 Gesture Recognizer

The gesture recognizer takes in real time video and passes
it through the locally run Media Pipe Hand Landmarker
model to produce hand landmarks as shown in Figure 15.

These hand landmarks are then analyzed frame by frame
to classify the hand pose into either one of the two supported
gestures’ starting or ending poses as shown in 2 and 3 (flip

Figure 15. Hand Landmarks

The hand landmarks outputted by the Media Pipe Hand Landmarker
model.

forward or flip backward) or nothing.
If a starting pose has been detected, the user has a set

amount of time to complete the gesture before the gesture
recognizer resets and starts to look for a new gesture being
performed. If the ending pose for the starting gesture has
been detected within that time frame, the gesture recognizer
sends an updateGesture request to the server to update the
server state. The time frame is set to small enough such that
the user is less likely to trigger a misdetection of the system
by interpolating other unrelated poses between the start and
end pose, however it is still possible for the user to trigger a
misdetection through this interpolation as our system only
examines the start and end poses of a gesture and not the
poses in between.

In order to detect the starting pose for the two supported



gestures, we examine multiple landmarks. First, we detect
the hand orientation by looking at the relative angle between
the wrist landmark and the middle knuckle landmark (in or-
der for a supported gesture to be detected the hand must be
upright.) Then we check to see whether the hand is fully
closed (flip forward) or whether the hand is fully closed
with the index finger pointing up (flip backward) by analyz-
ing the relative position of fingertips to their knuckles and
the distance between the finger tip to the wrist as well as
the joint underneath the fingertip to the wrist. If a finger is
fully closed while the hand is upright we would expect the
y position of the fingertip to be smaller than the y position
of the knuckle. If a finger is open, we would expect the dis-
tance between the wrist and the fingertip to be greater than
the distance between the wrist and the joint underneath the
fingertip. We use the distance metric rather than a simple y
coordinate check for open fingers to allow for a smaller and
more natural range of motion (as distance does not require
the fingers to be fully extended.)

We detect the ending pose for the supported gestures by
checking whether all finger on the hand are open (flip for-
ward) or whether the hand is fully closed (flip backward)
using the same logic as above. The overlap in the start of
the flip forward gesture with the end of the flip backward
gesture allow for minimal friction when interfacing with our
system.

3.3. Hardware

The main hardware that enabled the development of our sys-
tem was a 15.6 inch Capacitive Touch LCD Screen from
Waveshare. We used a standard commercially available ca-
pacitive touchscreen stylus for interaction with the display.
For our final demo we ran our frontend and backend servers
from a single laptop, using the built in webcam of the lap-
top for gesture recognition. As we will discuss in the Road-
blocks and Lessons Learned section, we also attempted to
run CalPal as a standalone IoT device using a Raspberry Pi
model 4B along with a PiCam 3 module.

4. Roadblocks and Lessons Learned
4.1. Text Recognition

One major hurdle we faced was with the handwriting text
recognition model we initially chose. Our intention was to
utilize the Tensorflow Handwriting Text Recognition model
developed by Scheidel [6]. This model employs two stages:
one for detecting individual words on a page and another
for recognizing the text within those segmented words. Ini-
tially, when testing the model using screenshots of hand-
written text from our calendar frontend, we observed what
seemed to be satisfactory segmentation. However, a signifi-
cant issue arose when the model struggled to accurately seg-
ment numbers. Despite attempts to adjust inference param-

Figure 16. This figure shows the difference in output between the
SimpleHTR and Google Cloud Vision handwriting text recogntion
models. For our use case, Google Cloud Vision provided much
more accurate and consistent segmentations

eters such as margin and text scale, we realized the recog-
nition quality fell short of our requirements for scheduling
events at specific times.

Subsequently, we explored alternative solutions and dis-
covered that the Document Text Recognition functionali-
ties of the Google Cloud Vision suite provided superior text
segmentation. This API accepts an image in base64 en-
coded format as input and returns a JSON object containing
the detected text. Since we were already transmitting the
user’s handwritten canvas image to the backend as a base64
encoded string, transitioning to this API required minimal
code modifications. As a result, we opted to switch to this
solution 16.

4.2. Raspberry Pi

We attempted to run CalPal as a standalone IoT device us-
ing the Raspberry Pi 4B to host the backend with a PiCam
3 as the camera. The greatest roadblock to this approach
was that the Raspberry Pi 4B was unable to run the Me-
dia Pipe hand landmarking model fast enough for our use
case. At start up there would be around an 8 second lag
between a hand first appearing on the screen and the hand
landmarks appearing. Once those hand landmarks appeared
there would be a 4 second delay between a gesture being
completed and it being detected by the system. In order to
resolve this we tried decreasing the size of the frame image
input to the model in hopes that it would make it run faster
to no avail. We also looked into using a USB hardware ac-
celerator; however, the available ones (Coral USB) require
significant model modification and set up that we did not
have easy access to.

Due to this latency, we made the decision to shift back
to using a more powerful computer to run the system. We
hope that with more powerful hardware the system will be



able to run as a standalone product.

4.3. The Easy

We found that there were actually many open source or eas-
ily accessible AI models for accomplishing the inference
tasks we were interested in with CalPal, such as gesture de-
tection and handwriting recognition. As we had some prior
experience with web development, using a client server ar-
chitecture to prototype our system allowed for quick iter-
ation and a natural division of work. Finally, using web
frameworks and the open source MediaPipe library for
Python allowed us to focus on user interaction rather than
the IO of the hardware (for example with the touch input or
camera input).

4.4. The Hard

Overall, we found it took longer than expected to go from
our proposed functionalities to concrete realization of the
architecture that would accomplish them. We certainly
learned the merits of breaking up big problems into smaller
pieces. Additionally, we found integration of code writ-
ten separately sometimes time consuming, and recognized
the importance of well-defined abstractions. Occasionally,
making react-big-calendar work for our use case posed a
challenge, as we didn’t have direct access to the sub com-
ponents of the module and therefore had to be creative with
css to achieve a desired custom look. Finally, during our
preliminary research we found many packages/models that
appeared to fit our use case, and vetting these within the
context of our system capabilities proved difficult.

5. User Study
We conducted a small-scale usability testing study involv-
ing 5 participants, tasking them with interacting with the
calendar using the prescribed script:
1. ”You can create an all-day event in Google Calendar by

entering your event name within a calendar day’s bound-
ary and clicking ’Add Event.’ Can you attempt to add an
all-day event?”

2. ”The calendar also accommodates scheduled events by
including a standard time, followed by AM or PM, after
the event name on a date. Please schedule an event.”

3. ”To remove an event, switch to the eraser function using
the Erase button and touch any part of a scheduled event
name. Can you try removing an event?”

4. ”To navigate the calendar to the next month, hold your
hand upright in a closed fist, then open your hand. To
move to the previous month, hold your hand upright
with your pointer finger extended, then close your fist.
Can you try flipping the calendar page forward and
backward?”

We then observed each user’s interactions with tasks 1-
4 before soliciting feedback. During interactions 1 and
2, we noted that users took some time to adjust to the
required pressure for accurate writing with the capacitive
touchscreen stylus. We introduced them to the eraser func-
tion during this phase to facilitate corrections to their event
names. Moreover, many users naturally rested their palms
on the tablet to stabilize their writing. As our current system
lacks palm rejection, this led to some inadvertent strokes.
After approximately two initial attempts, users consistently
managed to add and remove events from the Calendar.

We observed a steeper learning curve with gesture inter-
action, as users experimented with optimal hand placement
and angle for gesture detection. Demonstrating the gestures
and providing visual feedback from the camera view aided
in improving gesture detection.

Following the interactions, we gathered open-ended
feedback from each of the 5 users. Users found the event
addition functionality intuitive but expressed a desire for
automatic synchronization of events with the Calendar (i.e.,
immediate syncing upon completion of writing). Addition-
ally, users were satisfied with the intuitiveness of the for-
ward and backward flipping gestures but desired more con-
sistent gesture detection and faster visual feedback. Sur-
prisingly, users provided extensive feedback regarding ad-
ditional functionalities resembling those of Google Calen-
dar, such as automatic syncing of events added directly to
Google Calendar with CalPal, drag-and-drop event move-
ment, and recurring event creation. This underscores users’
preference for the convenience offered by mobile schedul-
ing systems and may serve as valuable insights for future
CalPal development.

Lastly, users were asked to rate the resemblance of the
generated theme to their current month’s events on a scale
from 1 to 5, where 1 denoted ”No resemblance” and 5 de-
noted ”Perfect Resemblance.” The average rating was cal-
culated at 3.8, indicating a potential area for improvement
in the engineering of our stable diffusion prompt.

6. System Performance and Limitations

6.1. Overall System Evaluation

To quantitatively assess the usability of our system, we con-
ducted UI system performance tests across three primary
workflows: event addition, event removal, and calendar
month change.

For the event addition and removal workflows, we mea-
sured elapsed time metrics in milliseconds for both the up-
date of the Google Calendar and the refresh of the calen-
dar theme. In the case of changing the calendar month, we
recorded the elapsed time until the new month view was
fully loaded, including both the events for the month and
the updated calendar theme. Detailed metrics are presented



Table 1. UI System Performance Test Results

Metric
Time to Gcal
Update
(Add Event)

Time to Theme
Update
(Add Event)

Time to Gcal
Update
(Delete Event)

Time to Theme
Update
(Delete Event)

Time to Month
View Update
(Change Month)

Mean Elapsed
Time (ms)

920 7345 713 4156 224

This table reports the results of our UI system performance tests, timed using the performance.now() Javascript builtin method. Mean elapsed
time in milliseconds is reported for various Add event, delete event, and change month workflows.

in Table 1.
Notably, we observed an average reduction of 3000 ms

in time taken to update the calendar theme when deleting
events. We attribute this improvement to the caching of im-
ages for unchanged prompts within the Huggingface stable
diffusion API. Following the RAIL guidelines [1], which
suggest users expect tasks such as page loading or view
changes to occur within 1000 ms, we find our system’s
performance satisfactory for both the Google Calendar up-
date workflows and the month view update workflow, as our
Mean Elapsed Time falls below this threshold.

However, we noted that text-to-image generation takes
longer, resulting in a delay of approximately 7 seconds be-
fore users receive feedback in the CalPal UI after clicking
the ’Add Event’ button. While this falls below the 10000 ms
threshold at which users may lose interest and potentially
abandon tasks, it represents an area for improvement. One
potential enhancement could involve providing alternative
visual feedback while the new calendar theme is generat-
ing.

Finally, we evaluated the Levenshtein edit distance be-
tween the intended written word and the segmented string
returned by the Google Cloud Vision API, assessing sub-
jective handwriting qualities as good, mediocre, and poor
using the phrase ’Dinner with friends 7pm.’ We observed
exceptional segmentation accuracy for both good and even
mediocre handwriting qualities, with an average edit dis-
tance of 1 primarily due to capitalization errors. Surpris-
ingly, for nearly unintelligible handwriting, we found an
average edit distance of 9, which was lower than expected
given the 23 characters in the string.

6.2. Frontend

Our frontend was evaluated well in the user study and is able
to deal with user and system failures robustly. However,
a current limitation of our frontend is that different screen
sizes change the rendering and can cause components of
the calendar to overlap. There is currently no partial eras-
ing and the drawing response can lag relative to the touch
movement due to the operations running in the background
of the frontend.

Additionally due to the tradeoff between polling and

other system lag in the frontend as described in the Frontend
section, polling is only conducted once every second. This
could be sped up by refactoring the code to make this re-
quest a callback function reducing how often we are polling
the backend.

6.3. Backend

The backend runs the gesture recognition module as a sepa-
rate process and whenever a gesture is detected the request
to the server is started on a different thread. This allows
the gesture recognition and notification to be non block-
ing allowing smooth integration with the rest of the sys-
tem. However as the server is updated through a request
from this module, there is up to half a second lag in sending
this request over. As we are only polling the backend every
second though, this is less important. This latency could
be improved through integrating the module with the server
and running it in a separate thread.

Additionally, a current limitation of the gesture recog-
nition is that only two gestures are supported for flipping
backward and flipping forward. These gestures allow for
a natural range of motion but sometimes result in system
error.

We conducted an experiment where we asked 3 individu-
als to interact with our gesture recognizer and do the follow-
ing: attempt to perform the flip forward gesture 20 times,
attempt to perform the flip backward gesture 20 times, and
interact with the system for a minute without any gestures.
The first was instructed to flip as fast as naturally comfort-
able, the second was instructed to flip naturally, and the
third was instructed to look at the hand landmarks outputted
to make sure they aligned with their hand while flipping.
The results of this experiment are in Table 2.

The system has a harder time accurately detecting flips
when the hand is moving too fast. This is due to the fact
the hand landmarker is unable to keep up with the speed of
the hand. As the users slow down the accuracy increases
dramatically. The user flipping moderately fast (which is
what we expect to be the most natural use case) resulted
in a 100% accuracy rate for the flip forward gesture and a
90% accuracy rate for the flip backward gesture. On average
our system performed much better at detecting the flip for-



Table 2. Gesture Experiment Results

Individual
Flip Forward
Accuracy

Flip Backward
Accuracy

Misdetections/
Minute Notes

A 0.95 0.75 5
Flipping
extremely fast

B 1.00 0.90 1
Flipping
moderately fast

C 1.00 0.95 4
Flipping intentionally
while looking at
landmarks

Average 0.98 0.87 3.33

This table reports the results of our gesture system experiment asking 3 users to perform the flip forward gesture 20 times, the flip backward
gesture 20 times, and to interact with the system with their hands in camera view without making any of the supported gestures. We report the
flip forward accuracy, the flip backward accuracy, and the misdetections/minute when not making gestures on an individual and aggregate level.

ward gesture with an average accuracy of 98% than the flip
backward gesture with an accuracy of 87%. The hand land-
marker at times has trouble detecting the index finger when
it is pointed up and instead landmarks it as being closed with
the rest of the fingers. In particular, it also struggles to de-
tect the movement of the index finger if the other fingers on
the hand are also closed leading to some drop in accuracy.
On average our system had 3.33 false positive midetections
per minute when the user was interacting with the system
with their hand in view. This could be rectified by imposing
stricter requirements on the gesture making at the expense
of feeling less natural to the user. However when the user
is naturally interacting with the system to write or to add an
event or just to look at the calendar, their hands are often
not by their face (and thus not in camera view).

6.4. Outside Tools

The outside APIs and libraries we used in our system overall
worked very well. However, the largest issue is that the
Media Pipe hand landmarker can lag causing gestures to not
be detected or even gesture misdetection. A solution to this
would be to run the model on a more powerful computer.

6.5. Hardware

The largest limitation of the current hardware we are us-
ing is that the capacitive touch screen isn’t very performant
for drawing on the screen with a stylus. In order to draw,
the user needs to press harder than what they would have to
press when writing with a marker for example. Additionally
at times the touch point, due to the capacitive touch screeen
being configured to register finger touches, is not very pre-
cise and there can be a disconnect between what the user
is intending to write and and what is shown on the screen.
Additionally, the screen application is not configured to use

palm rejection as discussed in the user study.
A potential avenue to rectify this is to use a resistive

touch screen which depends solely on pressure which we
hypothesize would allow for better stylus interaction at the
cost of finger interaction.

6.6. Interesting Failure

An interesting failure our system has, has to do with the
limitations of the backend. Our backend only maintains
up to 12 months of state, however the frontend is able to
query for decades. Thus for example if an event has been
added in January 2024 if the user flips back to another year
in January (ie: 2023 or 2025) the system will display the
2024 events for that year. Once on January 2023, the user
is still able to add and delete events as normal. Even when
an event is added in a year that the state is not being main-
tained for it will still be added appropriately to the Google
calendar for the correct date. It is just that we only maintain
12 months worth of handwriting canvas and every month is
mapped to the same canvas regardless of the year causing
overlap in displays for the same month in different years on
the frontend. This problem can be mitigated by using an ac-
tual database creating different canvases for the same month
in different years.

7. Conclusions and Next Steps
CalPal serves as a great launching point into more intel-
ligent and intuitive calendaring. Given feedback from the
user study and current system limitations the next steps we
plan to pursue include: state maintenance for more than 12
months, decreasing gesture polling latency, and running the
system as a standalone product. Additionally as the system
only supports a one way sync with Google calendar, an-
other avenue of exploration is to make this syncing bidirec-



tional (ie: removing an event on the digital Google calendar
should remove it on the CalPal).

8. Collaboration
Jenny and Devin worked together to design the complete
system functionality and specify the interaction functions
between the back and front ends.

Jenny was responsible for implementing the system
backend including the server and api endpoints to support
frontend-backend communication, the backend calendar ab-
stract data type, state maintenance, gesture recognition, and
generative calendar theming.

Devin was responsible for implementing the frontend,
including the logic for processing touch input (and interfac-
ing with the Google Cloud Vision Handwriting Recognizer
API), updating calendar views based on gesture input, and
updating the calendar theme.

References
[1] Measure performance with the RAIL model. Web article. Ac-

cessed on May 15, 2024. 11
[2] Dakboard customizable display. https://dakboard.

com/site, 2024. Accessed: 2024-05-11. 2
[3] Mango display digital calendar display. https :

/ / mangodisplay . com / digital - calendar -
display, 2024. Accessed: 2024-05-11. 2

[4] Yanliu Huang, Zhen Yang, and Vicki G. Morwitz. How using
a paper versus mobile calendar influences everyday planning
and plan fulfillment. Journal of Consumer Psychology, 33(1):
115–122, 2023. 2

[5] Julian.digital. Multi-layered calendars. https://
julian.digital/2023/07/06/multi-layered-
calendars, 2024. Accessed: 2024-05-11. 2

[6] Harald Scheidl. Htrpipeline, handwriting text recognition with
tensorflow. https://github.com/githubharald/
HTRPipeline, 2023. 9

[7] Timothy J. Smoker, Carrie E. Murphy, and Alison K. Rock-
well. Comparing memory for handwriting versus typing. Pro-
ceedings of the Human Factors and Ergonomics Society An-
nual Meeting, 53(22):1744–1747, 2009. 2

https://dakboard.com/site
https://dakboard.com/site
https://mangodisplay.com/digital-calendar-display
https://mangodisplay.com/digital-calendar-display
https://mangodisplay.com/digital-calendar-display
https://julian.digital/2023/07/06/multi-layered-calendars
https://julian.digital/2023/07/06/multi-layered-calendars
https://julian.digital/2023/07/06/multi-layered-calendars
https://github.com/githubharald/HTRPipeline
https://github.com/githubharald/HTRPipeline


Project name: CalPal 

Project author(s): Jenny Moralejo; Devin Murphy 

 

Note that these are intended to be short answer questions, except perhaps for the last one. 

Repeat for all packages/tools/libraries you used (make a copy of the table for each package, etc.) 

 

 

Package/Tool/Library (name and version number): 

 

Google Cloud Vision Optical Character Recognition API 

What machine and OS version did you run it on (so 

people will know roughly what compute power and what 

environment it needs) 

 

Lenovo ThinkPad P1 Windows 10 

Where is it available? (eg url): 

 

https://cloud.google.com/vision/docs/ocr 

 

What did you use it to do? (One word or phrase is fine if 

the answer is the obvious, eg speech recognition, face 

detection, etc., otherwise explain a little more) 

 

Handwriting detection 

What was the data type of the input (eg image as a 

matrix, mp3 format for sound, etc.): 

 

Png files for our project; many types supported 

How well did it work in terms of 

• accuracy, as in rough percentage correct, in your 

experience (no need to run a formal evaluation): 

• speed: (as in, fast enough to allow convenient use, or it 

slowed down the system); 

 

- 98% 

- Very fast (API) 

Did it work out of the box? If not, what did you have to 

do to use it? 

 

No – create a google cloud project (instructions in link above) 

 

 



 

Package/Tool/Library (name and version number): 

 

Google Calendar API v3 

What machine and OS version did you run it on (so 

people will know roughly what compute power and what 

environment it needs) 

 

Lenovo ThinkPad P1 Windows 10 

Where is it available? (eg url): 

 

https://developers.google.com/calendar/api/guides/overview 

What did you use it to do? (One word or phrase is fine if 

the answer is the obvious, eg speech recognition, face 

detection, etc., otherwise explain a little more) 

 

Calendar event syncing with linked online Google Calendar 

What was the data type of the input (eg image as a 

matrix, mp3 format for sound, etc.): 

 

String denoting event to be added or string id denoting event to 

be deleted 

How well did it work in terms of 

• accuracy, as in rough percentage correct, in your 

experience (no need to run a formal evaluation): 

• speed: (as in, fast enough to allow convenient use, or it 

slowed down the system); 

 

- 100% 

- Very fast (API) 

Did it work out of the box? If not, what did you have to 

do to use it? 

 

No – create a google cloud project and link calendar  instructions 

here: 

https://developers.google.com/calendar/api/quickstart/python 

 

 

 

 

 

 

 

 



 

Package/Tool/Library (name and version number): 

 

Hugging Face Stable Diffusion API 

What machine and OS version did you run it on (so 

people will know roughly what compute power and what 

environment it needs) 

 

Lenovo ThinkPad P1 Windows 10 

Where is it available? (eg url): 

 

https://huggingface.co/docs/api-inference/en/index 

 

What did you use it to do? (One word or phrase is fine if 

the answer is the obvious, eg speech recognition, face 

detection, etc., otherwise explain a little more) 

 

Generative event theming for calendar based on calendar events 

using model stable-diffusion-v1-4 

What was the data type of the input (eg image as a 

matrix, mp3 format for sound, etc.): 

 

String of prompt for the stable diffusion model 

How well did it work in terms of 

• accuracy, as in rough percentage correct, in your 

experience (no need to run a formal evaluation): 

• speed: (as in, fast enough to allow convenient use, or it 

slowed down the system); 

 

- 90% rate limited if sending a lot of requests will fail 

- Very fast (API) 

Did it work out of the box? If not, what did you have to 

do to use it? 

 

No – create a hugging face account and generate a token 

 

 

 

 

 

 

 

 



 

Package/Tool/Library (name and version 

number): 

 

Media Pipe Hand Landmarker 

What machine and OS version did you run it 

on (so people will know roughly what 

compute power and what environment it 

needs) 

 

Lenovo ThinkPad P1 Windows 10 

Where is it available? (eg url): 

 

https://developers.google.com/mediapipe/solutions/vision/hand_landmarker/python 

 

What did you use it to do? (One word or 

phrase is fine if the answer is the obvious, eg 

speech recognition, face detection, etc., 

otherwise explain a little more) 

 

Generate hand landmarks to be analyzed for gesture detection 

What was the data type of the input (eg image 

as a matrix, mp3 format for sound, etc.): 

 

Image frame as mediapipe.Image (can load from file or numpy array) 

How well did it work in terms of 

• accuracy, as in rough percentage correct, in 

your experience (no need to run a formal 

evaluation): 

• speed: (as in, fast enough to allow 

convenient use, or it slowed down the 

system); 

 

- 95% sometimes hidden landmarks not classified correctly  

- If you move your hand too fast the system will lag but otherwise works 

relatively well – limited by the FPS of your device 

Did it work out of the box? If not, what did 

you have to do to use it? 

 

No – you have to write boilerplate code to get image from camera, run the model, 

and draw the landmarks (modified the following to work with live video) 

 

 

 



 

Package/Tool/Library (name and version number): 

 

React-big-calendar 

What machine and OS version did you run it on (so 

people will know roughly what compute power and what 

environment it needs) 

 

Lenovo ThinkPad P1 Windows 10 

Where is it available? (eg url): 

 

https://github.com/jquense/react-big-calendar 

 

What did you use it to do? (One word or phrase is fine if 

the answer is the obvious, eg speech recognition, face 

detection, etc., otherwise explain a little more) 

 

Base calendar library we build our final calendar off of 

What was the data type of the input (eg image as a 

matrix, mp3 format for sound, etc.): 

 

N/A 

How well did it work in terms of 

• accuracy, as in rough percentage correct, in your 

experience (no need to run a formal evaluation): 

• speed: (as in, fast enough to allow convenient use, or it 

slowed down the system); 

 

- N/A 

- Base calendar functionality (flipping pages with buttons) 

quite fast  

Did it work out of the box? If not, what did you have to 

do to use it? 

 

Yes 

 

 


	. Introduction and Related Work
	. System Functionality
	. Touch Based Functionality
	. Gesture Based Functionality
	. Generative Calendar Theming
	. Online Calendar Syncing
	. State Maintenance
	. Example Use Case

	. System Design and Architecture
	. Frontend
	. Backend
	Server
	Calendar Abstract Data Type
	Gesture Recognizer

	. Hardware

	. Roadblocks and Lessons Learned
	. Text Recognition
	. Raspberry Pi
	. The Easy
	. The Hard

	. User Study
	. System Performance and Limitations
	. Overall System Evaluation
	. Frontend
	. Backend
	. Outside Tools
	. Hardware
	. Interesting Failure

	. Conclusions and Next Steps
	. Collaboration

