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Abstract

Speech production relies on the coordinated action of the
vocal cords and the movement of the vocal tract to generate
a variety of sounds. The vocal tract transfer function can
be used to characterize the acoustic properties of unvoiced
and voiced sounds, but most techniques for estimating this
function rely solely on audio signals. In order to better un-
derstand the relationship between the physiology of the vo-
cal tract and the acoustic properties of its produced sounds,
this paper investigates the feasibility of using computer vi-
sion techniques to accurately predict the vocal tract trans-
fer function coefficients from vocal tract MRI images. We
construct a dataset by employing linear predictive coding
to map 2D Sagittal-view MRI frames to vocal tract transfer
function coefficients. Subsequently, we develop and evalu-
ate a CNN-RNN architecture trained on these MRI frame
and coefficient vector pairs. While our architecture tends
to predict the mean coefficients of our datasets, we demon-
strate the potential for added generalization capabilities
provided by a combined CNN-RNN architecture, as well as
the ability to learn meaningful representations for under-
standing speech production mechanisms.

1. Introduction

It is well-established that speech can be represented as the
output of a time varying source-filter system, where the vo-
cal tract acts as the filter and vibrations produced by the
epiglottis serve as the source [5]. The time-varying filter
can be characterized by an all-pole transfer function if we
approximate the speech signal as a weighted sum of its past
values and current values:

s[n] =

p∑
k=1

ak · s[n− k] +G · u[n] (1)

Here, s[n] denotes the speech audio signal, G is the gain,
u[n] denotes the current source value , and the ak’s repre-
sent the filter coefficients.

Figure 1. Opera singer changes shape of vocal tract to align first
formant with fundamental frequency

The filter coefficients determine the location and mag-
nitude of resonant frequencies of the vocal tract transfer
function, known as ”formants”. These formants account for
a lot of the variation in speech production, especially for
vowels [2], [9]. Traditionally, Linear Predictive Coding is
employed to extract these coefficients from segments of an
audio signal.

However, if the vocal tract’s shape indeed primarily in-
fluences the filter as posited, there could be significant ben-
efits in predicting these coefficients directly from vocal tract
images. This information could empower opera singers to
optimize their mouth shapes for enhanced dynamic range
in unamplified settings [1], aid language learners in pin-
pointing pronunciation nuances, and assist speech therapists
in visualizing necessary physiological adjustments for their
clients’ progress. Our objective is to showcase the capabil-
ity of our network in accurately predicting coefficients to
estimate the first, second, and third formants (F1, F2, and
F3) of human speech. Additionally, we aim to demonstrate
the potential for reconstructing the audio signal associated
with a set of MRI frames using Linear Prediction Vocoder



resynthesis techniques and the vocal tract transfer functions
predicted by our network. To further elucidate the model’s
decision-making process, we will employ gradCam visual-
izations to highlight regions of the vocal tract that the model
found pivotal for accurately predicting the vocal tract trans-
fer function. This approach not only enhances interpretabil-
ity but also provides valuable insights into the anatomical
features crucial for speech production.

1.1. Related Works

Previous research has explored the use of neural networks
for estimating and tracking formants in speech signals. No-
tably, DeepFormants employed a feed-forward network ar-
chitecture to estimate the first three formants from audio
input and utilized a Recurrent Neural Network (RNN) to
predict sequences of formants [1]. While DeepFormants
demonstrated improved performance over traditional for-
mant tracking methods, it relied on direct features of the
audio signal for formant retrieval. In contrast, our approach
capitalizes on the filtering capabilities of convolutional neu-
ral networks (CNNs) to discern patterns between vocal tract
images and formant frequencies.

Our proposed method of direct synthesis, wherein spec-
tral coefficients are predicted from images and employed to
resynthesize speech using a vocoder, draws inspiration from
existing research in Silent Speech Interfaces [6]. These
interfaces facilitate speech communication solely through
silent articulation, without producing audible sound. For
instance, Moliner et. al used ultrasound images of the
tongue in a network comprising Convolutional and Bidi-
rectional LSTM layers to resynthesize Hungarian language
utterances [4]. While this method effectively synthesized
speech from ultrasound images, our approach offers a novel
perspective by utilizing 2D sagittal view MRI data, provid-
ing a comprehensive view of the entire vocal tract and po-
tentially yielding new insights into the impact of articulators
on speech acoustics.

Furthermore, our CNN incorporates transfer learning by
adopting the Resnet50 architecture, featuring a significantly
higher number of convolutional layers (48 in our model ver-
sus 2 in the previous work). This facilitates more nuanced
feature extraction, enhancing the model’s ability to discern
intricate relationships between vocal tract images and for-
mant frequencies. Additionally, while the network in [4]
was trained on speech data from a single female subject
speaking only in Hungarian, our MRI dataset encompasses
data from 75 diverse speakers across various demograph-
ics. This broader dataset enables our model to account for
greater variation in vocal production across demographic
groups, potentially enhancing its generalization capabili-
ties.

Figure 2. Vocal Tract MRI Input paired with Transfer Function
Label

2. Proposed Methods
We implemented a CNN-RNN architecture for a regression
task on estimated vocal tract transfer function, leveraging
MRI images as inputs. The MRI images and vocal tract
transfer functions were obtained through the processing of
a multi-speaker dataset of real-time speech production MRI
video [3]. Initially, we fine-tuned a ResNet50 architecture
to predict the vocal tract transfer function coefficients cor-
responding to each frame, thereby learning a 256-element
embedding of MRI image features. Subsequently, a recur-
rent neural network with LSTM layers was employed. Its
primary objective was to ingest a sequence of MRI frames
and capture temporal patterns in the features derived from
our pretrained CNN, enabling the prediction of LP coeffi-
cients for the last time step in the sequence. For a visual
representation of this methodology, refer to figure 3.

2.1. Data Preprocessing

For each MP4 file containing MRI video data from the ini-
tial 18 subjects within our dataset, we employed a multi-
step process for extracting the input and output tensors for
training. Initially, we extracted the audio signal from these
files and subjected it to a lowpass filter to eliminate high-
frequency noise. Subsequently, we utilized the ’detect-
Speech’ function from MATLAB’s Audio Toolbox to iso-
late segments of active speech by the user.

To obtain the vocal tract filter coefficients, we used a Lin-
ear Predictive Coding (LPC) algorithm with a desired filter
order of p = 18, a frame length of fL = 50 milliseconds,
and a hop size h of 25 milliseconds. This LPC analysis
yielded a length 20 coefficient vector at a rate of 40 frames
per second, with each vector consisting of 18 coefficients
plus an additional coefficient for a0 = 1 and one for gain.

However, it’s noteworthy that the frame rate of the MRI
video is approximately 84 frames per second, leading to
more MRI frames than coefficient vectors for a given au-
dio segment. To ensure a 1:1 ratio of input to label in our



Figure 3. Overview of methods used to predict vocal tract transfer function from 2D vocal tract MRI video. Video frames and audio are
separated, and Linear prediction (LP) coefficients are obtained on the audio signal associated with each frame. A Resnet50 CNN is then
fine tuned for a linear regression task on the LP coefficients using the normalized MRI video frames as inputs. This tuned CNN is then
used to train a CNN-LSTM model for higher accuracy prediction of the LP coefficients, which can then be used to resynthesize the original
audio signal associated with a set of MRI image frames.

dataset, we downsampled the video frames within each seg-
ment to match the number of coefficient vectors. Examples
of MRI frame inputs paired with their vocal tract transfer
function label can be seen in figure 2.

Subsequently, we preprocessed the extracted frames us-
ing the default weights and transforms provided by the
ResNet50 model within the torchvision Python package. In
summary, our data preprocessing pipeline resulted in a to-
tal of 163,022 image-coefficient pairs. We partitioned these
pairs, with 80% allocated for training and the remaining
20% for validation, to facilitate robust model training and
evaluation.

2.2. Resnet50 Fine Tuning

In order to harness meaningful features from our MRI video
frames for prediction, we fine-tune a pretrained ResNet50
architecture. This has proven successful in classification
tasks for MRI images in other contexts [10]. Initially, we
trained our network using the default weights tailored for
the ImageNet dataset, dedicating approximately a quarter of
our training dataset for 10 epochs while utilizing and Adam
optimizer with Mean Squared Error (MSE) loss and a learn-
ing rate scheduler. However, during this experiment, we en-
countered overfitting tendencies around epoch 7, as evident
in Figure 4.

To mitigate overfitting concerns and expedite training,
we opted to freeze the first three layers of the network
and retrain it on our entire dataset. This adjustment sig-
nificantly reduced the number of trainable parameters to
around 50,000. The decision to freeze the earlier layers
was informed by the understanding that these layers capture
more general features, thereby offering a balance between
addressing overfitting and preserving the CNN’s ability to
extract relevant information.

After implementing these adjustments, our model
demonstrated convergence, reaching a validation MSE of
approximately 0.226. This refined model was then utilized
as the feature extractor for our subsequent Recurrent Neural
Network (RNN) model, as detailed in the following section.
Additionally, we conducted a qualitative evaluation of the
learned representations by exploring gradCam activations
for layer 4, which are discussed in the experimental results
section of our paper.

2.3. CNN-RNN Training

In order to capture the temporal patterns in speech produc-
tion, we designed a CNN-RNN architecture, as has been
done for other applications such as automatic speech recog-
nition [8]. Initially, we replaced the last fully connected
layer of a pre-trained ResNet50 with a linear layer, aug-



Figure 4. Epoch vs MSE loss in training of Resnet50 without
frozen layers (left) and with frozen layers (right). This appears
to result in a more stable training paradigm

menting the feature space to 256 dimensions for our LSTM
model. Our network comprises two LSTM layers with a
hidden size of 128, followed by ReLU activation, batch nor-
malization, and dropout (p = 0.1) to mitigate overfitting.
During inference, sequences of 5 MRI frames are fed into
ResNet50, generating 256-dimensional embeddings. These
embeddings are then sequentially processed by the LSTM
layers to predict LP coefficients for the final timestep of
each sequence. We trained the network for 5 epochs using
an Adam optimizer with MSE loss, updating only the last
linear layer of ResNet50 and LSTM parameters. Our model
achieved a final MSE loss of 0.2125 on the validation set.

To assess model performance, we use visual compari-
son of predicted and labeled spectra, focusing on formant
peak locations. Additionally, we use MSE loss comparison
between the predicted coefficient vectors of the Resnet50
CNN by itself and the CNN-RNN network on our test set.

3. Experimental Results and Evaluation
After training our CNN and CNN-RNN networks for 10 and
5 epochs, respectively, we evaluate them on unseen MRI
frames for subject 42 of our dataset. As shown in figure
5, while a lower MSE is seen for the CNN on our train-
ing data, the combined CNN and RNN network achieves a
lower loss on the validation and test sets. This indicates that
this architecture may generalize better to unseen inputs.

In initial visual inspection of the vocal tract transfer
function exhibited by predicted and ground truth LP coeffi-
cients, we can notice some similar characteristics. For ex-
ample, the left transfer function in fig 6 shows that for some
of our video frames, the location of resonant peaks, or For-
mants, in the predicted transfer function (blue) are almost
identical to those of the actual transfer function.

However, upon further inspection we see that the model
has a pattern of predicting three formant frequencies around
581 hz, 1905 hz, and 2993 hz. As our loss function centered
around minimizing MSE, we should be skeptical that our
model is actually predicting the ”mean” of each coefficient
in our length 20 vector across all of our data points.

Further analysis of the distribution of the labeled coef-
ficient vectors and predicted coefficient vectors for our test

Figure 5. MSE Loss of predicted LP coefficient vectors by net-
work and dataset type

Figure 6. Frequency responses for predicted and ground truth LP
coefficient vectors. The plot on the left shows an occasion where
our prediction happens to match the label quite well, while the
right plot hints at model prediction of the mean

dataset confirms this suspicion. In figures 7, 8, and 9, we
show the means and variances for each of our 19 LP co-
efficients (excluding gain). The figures show that while the
model learns to output coefficients in distributions with sim-
ilar means to our labels, it is often predicting values very
close to this mean rather than learning the discriminating
capabilities necessary to make more varied predictions.

Finally, in order to evaluate what features of the vocal
tract our CNN finds most useful for predicting these acous-
tic properties such as formants, we plot the gradCam acti-
vations for the unfrozen layer of our Resnet50 fine-tuned
model for specific LP coefficients/MRI image pairs in our
train dataset [7].

Figures 10 and 11 demonstrate the potential of Resnet50
to learn meaningful representations for speech understand-
ing, as we can see clear anatomical representations appear-
ing for predicting these coefficients.



Figure 7. Means for each of the 19 LP coefficients across outputs
and labels for our test set

Figure 8. Variances for each of the 19 LP coefficients across labels
for our test set
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